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Abstract

Purpose: To evaluate a simplified method to measure choroidal thickness (CT) using commercially available enhanced
depth imaging (EDI) spectral domain optical coherence tomography (SD-OCT).

Methods: We measured CT in 31 subjects without ocular diseases using Spectralis EDI SD-OCT. The choroid-scleral interface
of the acquired images was first enhanced using a post-processing compensation algorithm. The enhanced images were
then analysed using Photoshop. Two graders independently graded the images to assess inter-grader reliability. One grader
re-graded the images after 2 weeks to determine intra-grader reliability. Statistical analysis was performed using intra-class
correlation coefficient (ICC) and Bland-Altman plot analyses.

Results: Using adaptive compensation both the intra-grader reliability (ICC: 0.95 to 0.97) and inter-grader reliability (ICC:
0.93 to 0.97) were perfect for all five locations of CT. However, with the conventional technique of manual CT measurements
using built-in callipers provided with the Heidelberg explorer software, the intra- (ICC: 0.87 to 0.94) and inter-grader
reliability (ICC: 0.90 to 0.93) for all the measured locations is lower. Using adaptive compensation, the mean differences (95%
limits of agreement) for intra- and inter-grader sub-foveal CT measurements were21.3 (23.33 to 30.8) mm and21.2 (236.6
to 34.2) mm, respectively.

Conclusions: The measurement of CT obtained from EDI SD-OCT using our simplified method was highly reliable and
efficient. Our method is an easy and practical approach to improve the quality of choroidal images and the precision of CT
measurement.
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Introduction

The choroid is important to support retinal and visual function

as it supplies nutrients and oxygen to retinal pigment epithelial

(RPE) cells and photoreceptors [1]. Therefore, the choroid may

play a role in the pathophysiology of many vision threatening

retinal diseases such as age-related macular degeneration [2,3],

polypoidal choroidal vasculopathy [4,5], central serous chorior-

etinopathy [6,7], Vogt-Koyanagi-Harada [8] disease and myopic

macular degeneration [9–12]. To elucidate the mechanisms

through which the choroid affects these retinal diseases, quanti-

tative assessment of choroidal characteristics such as choroidal

thickness (CT) is required.

However, it was not trivial to image CT because of its posterior

location and pigments in the RPE layer [13], until the advent of

spectral domain optical coherence tomography (SD-OCT) with

enhanced depth imaging (EDI). EDI SD-OCT has provided many

new insights into choroidal qualitative morphology. However, to

date a notable disparity exists between the CT measurements

obtained in different studies. Such variations could be due to

unavailability of a standardized and simple to use measurement

method and absence of built-in automated software to measure

CT in most of the commercially available OCT machines [14]. At

present, most of the studies perform the measurements manually

by using the in-built caliper system provided by the machine,

which is prone to measurement errors. The manual method is also
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time- and effort-consuming, making it unfeasible especially when

dealing with large population data.

As a result, while many studies have published the distribution

of CT in patients with retinal diseases and normal controls [15–

19], none of these studies have clearly described the method used

in detailed to measure CT. Therefore, the reliability of the CT

measurement methods in most of the papers is unknown. In this

paper, we describe a simple, semi-automated, time-efficient

method to measure CT using images acquired by EDI SD-OCT

and available compensation algorithms. We aimed to assess the

reliability of this new CT measurement technique in a sample of

healthy eyes.

Materials and Methods

Study Subjects and Design
Data for this analysis were derived from the Singapore Malay

Eye Study (SiMES), a population-based cross-sectional study of

eye diseases in Malay adults, age ranged from 40–80 years living in

Singapore. Details of the study design, sampling plan, and

methodology have been reported elsewhere [20]. In brief,

participants recruited in the current study underwent standardized

and detailed ophthalmic examination, including Spectralis EDI

SD-OCT imaging (see next section). The study was approved by

the Institutional Review Board of Singapore Eye Research

Institute. It followed the tenants of the Declaration of Helsinki

and written informed consent was obtained from the subjects after

explanation of the nature and possible consequences of the study.

Spectralis images of 31 subjects were randomly selected using a

random number generated in Stata (College par, Texas, USA).

Choroidal images were only selected from right eye of each subject

as our measurement technique can be applied uniformly between

right and left eyes. Therefore only the right eyes of the subjects

were evaluated. In addition, selecting only one eye from

individuals would help to avoid inter-eye correlation issue in

statistical analysis. ‘‘Normal fundus’’ was defined as free of any

macular or vitroretinal diseases on the basis of clinical fundus

examination by experienced Ophthalmologist and the results of

OCT imaging. Exclusion criteria for the normal participants

included: best corrected LogMAR VA .0.3, evidence of macular

or vitroretinal diseases, previous retinal or refractive surgery, past

history of intraocular surgery, or clinical features compatible with

a diagnosis of glaucoma suspect or glaucoma.

To evaluate the intra-grader and inter-grader reliability, 31

Spectralis images were randomly selected for the initial grading

Figure 1. Illustration of the raw versus the compensated image. (A) Raw OCT image of a healthy subject. The choroid-scleral interface is only
partially visible. Note the presence of blood vessels shadows as indicated by red asterisks. (B) Adaptive compensation was applied to the raw image
in order to remove blood vessels shadows, enhance contrast and improve visibility of the choroid-scleral interface (more uniform).
doi:10.1371/journal.pone.0096661.g001

Figure 2. Flow diagram of the measurement protocol.
doi:10.1371/journal.pone.0096661.g002
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phase. Grader A and grader B, masked to subject characteristics

and clinical diagnosis, independently graded these images to assess

inter-grader reliability. In addition, grader A repeated the

measurements after 2 weeks to assess intra-grader reliability. Both

graders assessed the same sets of training images before

commencing the grading task.

EDI SD-OCT Imaging
CT was obtained using Spectralis SD-OCT with EDI modality

(Wavelength: 870 nm; Heidelberg Engineering, Heidelberg,

Germany) after pupil dilation using tropicamide 1% and

phenylephrine hydrochloride 2.5%. Subjects’ keratometry read-

ings and the refraction data were entered into the software

program to estimate optical magnification and, therefore, to allow

for more accurate comparisons across individuals. A single

experienced examiner masked to the clinical diagnosis of the

subject performed the EDI-OCT examination. Seven sections,

each comprising 100 averaged scans (using the automatic

averaging and eye tracking features of the proprietary device),

were obtained in an angle of 5u–30u rectangle centered at the

fovea. The horizontal section passing through the center of the

fovea was selected for analysis. For each subject only the right eye

was chosen for subsequent analysis.

Measurement of Choroidal Thickness
The two major steps in our CT semi-automatic measurement

protocol are: (A) post processing of images by adaptive compen-

sation technique and (B) quantitative measurement of CT using

Photoshop software. On average, measurement of CT at multiple

locations (1.5 and 3 mm nasal and temporal to the fovea) requires

approximately 1 minute per image.

(A) Adaptive compensation technique. An accurate eval-

uation of the CT with EDI-OCT mainly relies on how well one

can delineate the choroid-scleral interface (CSI), which anatom-

ically represents the junction between the choroid and the sclera,

and is a principal landmark for quantitative measurements of

choroid. However, at present identification of CSI is highly

variable as there is no algorithm available in Spectralis for its

automatic detection. Therefore, in order to accurately determine

CT, once the EDI-OCT image was obtained, the CSI was

enhanced using a novel post-processing compensation algorithm

[21] which greatly improved the detection of CSI by correcting the

deleterious effects of light attenuation. In brief, this novel adaptive

compensation algorithm improved the ability to detect and

visualize the CSI. First, it removes noise over-amplification at

high depth and shadow artifacts casted by blood vessels (thus

decreasing the intra-layer contrast of the choroid). Second, it

improves the visibility of posterior choroid boundary, by

significantly increasing the inter-layer contrast across the CSI

(Figure 1).
(B) Measurement of CT using photoshop software. The

enhanced images were measured in Photoshop CS6 extended

(Adobe Systems Incorporated, San Jose, California). CT at sub-

foveal, 1.5 mm and 3 mm nasal and temporal from the fovea were

measured. Figure 2 shows a flow diagram summarizing the CT

measurement protocol. The detailed explanation of the steps

involved in quantification of CT measurement using Photoshop is

provided in Appendix S1.

Statistical Analysis
Statistical analysis was performed using MedCalc Version 12.6

(MedCalc Software, Ostend, Belgium) and SPSS Version 20.0

(SPSS, Inc., Chicago, IL, USA). Shapiro-Wilk tests were used to

check the normality of CT data at various locations. The reliability

of the CT measurement was assessed using intra- and inter-grader

agreements between two independent graders, measured by the

absolute agreement model of the intra-class correlation coefficient

(ICC) [22]. ICC value of 0.81–1.00 indicates almost perfect

agreement. Values of less than 0.40 indicate poor to fair

agreement. Bland Altman plot analyses [23,24] were performed

to see if there is any proportional bias between measurements. A

two-tailed paired sample t-test was used to analyze differences

between means in CT by location.

Results

Images from 31 eyes of 31 participants (aged 64.467.4 years)

were included in the analysis (Table 1). The mean (standard

deviation) sub-foveal CT in this study was 230.37 (66.66) mm
(average of 1st and 2nd measurements of grader A). CT measured

by the two graders is summarized in Table 2. The mean sub-

foveal CT measured by grader A for the 1st and 2nd measurements

was 229.74 (65.12) mm and 231 (69.14) mm, respectively, and was

232.19 (67.89) mm by grader B.

Using adaptive compensation both the intra-grader reliability

(ICC: 0.95 to 0.97) and inter-grader reliability (ICC: 0.93 to 0.97)

were perfect for all five locations of CT (Table 3). However, with

the conventional technique of manual CT measurements using

Table 1. Baseline characteristics of study subjects.

Characteristics Mean (SD)

Age, years 64.35 (7.42)

Gender, male 11 (35.48)

Axial length, mm 23.33 (0.88)

Average choroidal thickness,* mm

Sub-foveal 230.37 (66.66)

Nasal, 1.5 mm 214.33 (74.34)

Nasal, 3 mm 185.77 (69.96)

Temporal, 1.5 mm 224.53 (57.27)

Temporal, 3 mm 229.74 (52.03)

Data are expressed as mean (SD) except for gender, which is expressed as number (%).
*The average of 1st and 2nd measurement of Grader A.
doi:10.1371/journal.pone.0096661.t001
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built-in callipers provided with the Heidelberg explorer software,

the intra- (ICC: 0.87 to 0.94) and inter-grader reliability (ICC:

0.90 to 0.93) for all the measured locations is lower (Table 4).
Using adaptive compensation, the Bland Altman analysis of intra-

grader reliability for sub-foveal CT measurement showed 95%

LOA of 233.3 to 30.8 with a mean difference of 21.3 mm
(Figure 3). No significant systemic (except at nasal 3 mm,

p= 0.003) and proportional bias was detected in intra-grader

CT measurements at all locations. The Bland Altman analysis of

inter-grader reliability for sub-foveal CT measurement showed

95% LOA of 236.6 to 34.2 with a mean difference of 21.2 mm
(Figure 4). No significant proportional bias was observed in the

inter-grader CT measurements at all locations. Nonetheless, a

significant systemic bias at both 1.5 and 3 mm nasal locations was

found in the inter-grader CT measurement comparison

(p = 0.001). However, this could be due to thinnest CT at nasal

locations, making it more prone to systemic bias in CT

measurements.

In addition, the choroid intra-layer contrast (a measure of

shadow presence when high) and the CSI inter-layer contrast (a

measure of boundary visibility when high) were computed for all

images (n = 31) before and after applying adaptive compensation

(as in [25]). We found that the intra-layer contrast significantly

decreased from 0.8460.07 to 0.6060.07 (p,0.001; t-test),

whereas the inter-layer contrast significantly increased from

0.5060.14 to 0.9060.10 (p,0.001; paired t-test) after applying

adaptive compensation (Table 5).

Discussion

Despite significant advances in imaging technology there are

considerable variations in CT measurements across clinical

studies. In this report, we described a simple, semi-automated

method using adaptive compensation to measure CT from images

acquired by EDI SD-OCT. The results showed that the method

permits a highly reproducible tool for assessing CT from EDI SD-

OCT images. Our measurement method is also simple and

requires little time to perform (on average ,1 minute per image).

With these features, our method may have great potential for use

in both clinical and population-based studies which involve large

number of images.

Table 2. Summary of choroidal thickness measurements at various locations.

Location Grader A, 1st Measurement Grader A, 2nd Measurement Grader B Measurement

Sub-foveal 229.74 (65.12) 231.00(69.14) 232.19 (67.89)

Nasal, 1.5 mm 213.84 (75.12) 214.84(75.49) 221.52(76.08)

Nasal, 3 mm 191.13 (72.79) 180.42(68.25) 187.55(71.06)

Temporal, 1.5 mm 223.94 (56.33) 225.13(59.24) 231.65 (60.82)

Temporal, 3 mm 228.68 (50.64) 230.81(54.57) 230.71 (53.80)

Data are mean (SD).
doi:10.1371/journal.pone.0096661.t002

Table 3. Intra- and inter-grader agreements for the choroidal thickness measurement at 5 horizontal locations using adaptive
compensation.

Assessment of proportional biasd

Locations, CT
measurement ICC (95% CI)

Mean difference
(95% LOA) P Valuec

Pearson’s
correlation
coefficient, r P Value

Intra-grader
Reliabilitya

Sub-foveal 0.97 (0.94 to 0.98) 21.3 (233.3 to 30.8) 0.672 0.248 0.179

Nasal, 1.5 mm 0.95 (0.90 to 0.97) 21.0 (248.0 to 46.0) 0.818 20.160 0.933

Nasal, 3 mm 0.95 (0.87 to 0.98) 10.7 (225.3 to 46.7) 0.003 0.249 0.176

Temporal, 1.5 mm 0.96 (0.92 to 0.98) 21.2 (231.9 to 29.5) 0.674 20.187 0.313

Temporal, 3 mm 0.95 (0.90 to 0.97) 22.1 (233.5 to 29.2) 0.464 20.248 0.178

Inter-grader
Reliabilityb

Sub-foveal 0.96 (0.93 to 0.98) 21.2 (236.6 to 34.2) 0.715 0.070 0.708

Nasal, 1.5 mm 0.97 (0.92 to 0.99) 29.0 (234.4 to 16.4) 0.001 20.127 0.495

Nasal, 3 mm 0.97 (0.89 to 0.98) 29.8 (237.4 to 17.8) 0.001 20.230 0.212

Temporal, 1.5 mm 0.93 (0.86 to 0.96) 26.5 (248.3 to 35.3) 0.099 20.075 0.687

Temporal, 3 mm 0.94 (0.88 to 0.97) 0.1 (235.5 to 35.7) 0.977 0.043 0.818

LOA, Limits of Agreement; ICC, Intraclass Correlation Coefficient; CI, Confidence Interval.
aMean difference was determined from the1st time measurement minus the 2nd time measurement.
bMean difference was determined from Grader A measurement minus Grader B measurement.
cP value of one sample t-tests (comparing between mean difference and zero value) to indicate presence of systemic bias.
dUsing Pearson’s correlation coefficients of regression line.
doi:10.1371/journal.pone.0096661.t003
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There are considerable differences in CT measurements across

studies. Even though advances in OCT technology have reduced

acquisition time, adequate visualization of choroid is still lacking.

There are several challenges in imaging the choroid. First, the

choroid is located behind the RPE and Bruch’s membrane,

making it less accessible than the retina and more difficult to be

visualized. Second, the pigmentation in the RPE and the choroid

itself decreases the signal intensity. Lastly, unlike retinal imaging

[26], wherein the RPE and internal limiting membrane are thin

and clearly identifiable, the transition zone between the choroid

and sclera (i.e. CSI) has blurred border and is broader, making

CSI difficult to identify.

However, it is not always easy to distinguish CSI on acquired

images, which may be related to scan quality or anatomic

variation. Some choroidal scans have a distinct hypo-reflective line

corresponding to the supra-choroidal space, but often this line can

be indistinct leading to measurement error [27]. At present,

identification of CSI is highly variable. To overcome these

challenges, in this study we enhanced choroidal-scleral junction

using a post-processing adaptive compensation algorithm [21].

Measurement of CT was performed in the post-processed images

using Photoshop (Adobe Systems Incorporated, San Jose,

California), a readily available and easy-to-use program.

Adaptive compensation provides two major improvements.

First, the intra-layer contrast (of the choroid) significantly

decreased after applying adaptive compensation, indicating

successful shadow correction within the choroid. Second, the

inter-layer contrast (across the CSI) significantly increased after

applying adaptive compensation, indicating better visualization of

CSI and therefore allowing for precise measurement of CT. These

results are consistent with a previous study on standard

compensation [25] and indicate significant improvements in

image quality. Also, a study by Lin et al. established outer

choroidal contrast as a valid quantifiable measure of choroidal

Table 4. Intra- and inter-grader agreements for the choroidal thickness measurement at 5 horizontal locations using Spectralis SD-
OCT with conventional manual technique.

Locations, CT measurement ICC (95% CI) Mean difference (95% LOA)

Intra-grader Reliabilitya Sub-foveal 0.94 (0.87to 0.97) 9.7 (230.3 to 49.7)

Nasal, 1.5 mm 0.92 (0.85 to 0.96) 2.9 (241.1 to 54.9)

Nasal, 3 mm 0.92 (0.85 to 0.96) 4.1 (236.1 to 44.3)

Temporal, 1.5 mm 0.87 (0.75 to 0.93) 27.0 (252.1 to 38.1)

Temporal, 3 mm 0.88 (0.77 to 0.94) 21.9 (244.9 to 48.6)

Inter-grader Reliabilityb Sub-foveal 0.90 (0.60 to 0.96) 219.1 (263.7 to 25.6)

Nasal, 1.5 mm 0.93 (0.68 to 0.97) 18.3 (259.7 to 23.2)

Nasal, 3 mm 0.91 (0.67 to 0.96) 215 (254.3 to 24.3)

Temporal, 1.5 mm 0.91 (0.72 to 0.96) 212.7 (249.8 to 24.4)

Temporal, 3 mm 0.90 (0.58 to 0.96) 215.7 (251.3 to 19.9)

LOA, Limits of Agreement; ICC, Intraclass Correlation Coefficient; CI, Confidence Interval.
aMean difference was determined from the1st time measurement minus the 2nd time measurement.
bMean difference was determined from Grader A measurement minus Grader B measurement.
doi:10.1371/journal.pone.0096661.t004

Figure 3. Bland Altman plot of intra-grader reliability of sub-
foveal choroidal thickness (CT) measurement. The difference was
calculated by the 1st measurement minus the 2nd measurement. Pink
dashed line represents regression line of difference between 1st and
2nd measurements.
doi:10.1371/journal.pone.0096661.g003

Figure 4. Bland Altman plots of inter-grader reliability of sub-
foveal choroidal thickness (CT) measurement. The difference was
calculated by the grader A measurement minus the grader B
measurement. Pink dashed line represents regression line of difference
between the two graders measurements.
doi:10.1371/journal.pone.0096661.g004
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image quality and demonstrated that inverted SD-OCT imaging

optimizes visualization of CSI and choroidal vessels through

improved outer choroid contrast [28].

With improved intra- and inter-layer contrast, the compensated

images are likely more accurate than the non-compensated images

as the deleterious effects of OCT light attenuation have been

corrected, thus making the CSI more visible. The post-compen-

sation images are more representative of the eye tissue architec-

ture, since better estimates of the ocular tissues optical properties

(e.g. reflectivity) are provided. This has been formally demon-

strated in the original article by Girard et al. [25], and in the

following studies [21,29,30]. Lastly, although adaptive compensa-

tion is useful in all images, it is likely to be more useful when the

CSI is poorly visible, e.g. in images where light attenuation is

strong (Figure 1), emphasizing further the need for compensation

for more accurate thickness measurement of the choroid.

Adaptive compensation achieves high intra-grader (ICC: 0.95 to

0.97) and inter-grader (ICC: 0.93 to 0.97) repeatability in CT

measurements compared to conventional method (intra-grader

ICC: 0.87 to 0.94, inter-grader ICC: 0.90 to 0.93), suggesting the

use of adaptive compensation to improve the visualization of CSI

and to obtain more reliable CT measurements. However, the high

repeatability can be explained by the standardization and strict

adherence to a rigorous grading protocol in the present study. In

addition, both graders underwent the same training set for

standardization purpose before embarking on the actual grading

task. The present results are in line in the studies by Ikuno et al.

[31] and Yamashita et al. [32] who reported an inter-grader ICC

of 0.97 and 0.94, respectively, for sub-foveal CT measurements.

However, in these two previous studies the intra-grader repeat-

ability was not evaluated, and it is not clear how the choroid

images, where CSI could not be clearly visualized, were processed.

But the present study has its own limitations, as the

measurement of CT was subjective in nature, and was therefore

subject to measurement bias. However, our method may be less

prone to observer error because the CSI was enhanced by

adaptive compensation to give better visibility. An automated, and

thus may be more objective, method of measuring CT would be of

potential interest to facilitate, speed-up and render operator-

independent such analyses.

There are few recent studies on automatic choroidal segmen-

tation in OCT images. Zhang et al. proposed an automatic

segmentation algorithm for the choroidal vessels using Cirrus

OCT in 24 normal subjects. But their aim was to quantify

choroidal vasculature thickness and choroicapillaries equivalent

thickness rather than the CT [33]. Likewise, Torzicky et al. [34]

and Duan et al. [35] developed the automatic algorithms to detect

the boundary between the choroid and sclera based on polariza-

tion sensitive OCT which are not commercially available.

Although, Tian et al. [36] in 2013 proposed an automatic

algorithm that could segment choroid in commercially available

Spectralis OCT, but their algorithm was tested only on 20 EDI

OCT images and need to be validated on more images to prove

the robustness of algorithm before its application in clinical studies.

While we are preparing the manuscript, a commercially available

CT measurement algorithm in swept-source OCT (Topcon Corp.,

Tokyo, Japan) is being made available. However, in view of lack of

supporting agreement studies on the algorithm and manual

choroidal segmentation (in both normal and diseased eyes), the

accuracy and reliability of automated CT analysis by using swept-

source OCT is yet to be established for use in clinical settings.

In conclusion, we described a simplified, semi-automated and

practical method ‘‘adaptive compensation followed by using

Photoshop’’ that gives excellent intra- and inter-grader reliability

(ICC.0.93) to quantify CT in the EDI SD-OCT images. This

method has great potential usage in both clinical and population

based studies, as reliable and accurate measurements of CT from

EDI-OCT images are essential in distinguishing clinically signif-

icant change of CT and assisting in risk-profiling for various

posterior segment diseases.

Supporting Information

Appendix S1 Detailed steps to quantify choroidal thick-
ness using Photoshop.
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